

    
      
          
            
  
AESOP


A python library for studying electrostatics in proteins

AESOP is developed and maintained by members of the Biomolecular Modeling and Design Lab at the
University of California, Riverside, including: Reed Harrison, Rohith Mohan, and Dimitrios Morikis.

[image: alternate text]
 [http://biomodel.engr.ucr.edu]Indices and tables


	Index


	Module Index


	Search Page









Project summary

For many proteins complexes, long range electrostatic interactions play a pivotal role in the formation
of the encounter complex. Charge-charge interactions can also serve to thermodynamically stabilize any
resulting complex. In many cases, however, optimization of a protein associating with its binding partner
is sufficient to increase protein activity as many protein systems are diffusion limited. The AESOP
framework provides a tool to investigate the electrostatic nature of protein interactions both across
protein families as well as within indivdiual proteins in terms of individual amino acid contributions.

AESOP is implemented in Python 2.7 and depends on a number of computational tools including: APBS,
PDB2PQR, ProDy, and Modeller. Documentation can be found at aesop.readthedocs.io. We welcome questions and collaboration on the GitHub page for AESOP at
https://github.com/rohithmohan/aesop [https://github.com/biomodel/aesop].


Methods

AESOP currently supports three computational methods:


	
	Alascan

	
	Perform a computational alanine scan on a provided protein structure using a side-chain truncation scheme


	Association free energies for mutatants (relative to the parent) may be predicted if 2 or more selection strings are provided


	Users may restrict mutations to some region of the protein structure










	
	DirectedMutagenesis

	
	Perform a directed mutagenesis scan on a provided protein structure using Modeller to swap amino acids


	Association free energies for mutatants (relative to the parent) may be predicted if 2 or more selection strings are provided


	Mutations must be specified










	
	ElecSimilarity

	
	Compare electrostatic potentials of multiple protein structures, or compare electrostatic potentials of alanine scan mutants


	If structures are very dissimilar, the user should superpose coordinates for each protein structure according to their desired method















General Utilities

In addition to the three main computational methods, AESOP provides a total of three functions capable
of displaying results as figures during interactive Python sessions or saving results as figures during
any Python script:


	
	aesop.plotScan()

	
	Show bargraph summary of results from computational mutagenesis methods (Alascan, DirectedMutagenesis)










	
	aesop.plotNetwork()

	
	Show network summary of results from computational mutagenesis methods (Alascan, DirectedMutagenesis)










	
	aesop.plotESD()

	
	Show heatmap summary of results from methods exploring electrostatic similarity (ElecSimilarity)










	
	aesop.plotDend()

	
	Show dendrogram summary of results from methods exploring electrostatic similarity (ElecSimilarity)










	
	aesop.plotScan_interactive()

	
	Show bargraph summary of results from computational mutagenesis methods in a more interactive format (Alascan, DirectedMutagenesis)










	
	aesop.plotNetwork_interactive()

	
	Show network summary of results from computational mutagenesis methods in a more interactive format (Alascan, DirectedMutagenesis)










	
	aesop.plotESD_interactive()

	
	Show heatmap summary of results from methods exploring electrostatic similarity in a more interactive format (ElecSimilarity)










	
	aesop.writePDB()

	
	Save PDB file with changes in free energy of association relative to the parent (by residue) in the beta-factor column















Notes


	We recommend using Anaconda to aid in installation of Python scientific libraries


	Depending on your platform, ProDy may need to be installed with an executable







Contents



	About

	Installation

	Preparing PDB Files

	Atomic Selections

	Electrostatic Similarity

	Alanine Scan

	Directed Mutagenesis Scan

	API











          

      

      

    

  

    
      
          
            
  
About

AESOP is a computational framework to investigate electrostatic interactions that promote association
of protein complexes and to compare similarity of electrostatic potentials across families of proteins.
In the former case, protein engineering (or re-engineering) of enzymes or other industrial proteins may
benefit from AESOP by using the software to optimize association of some protein with its binding partner.
In such applications, the activity of the protein system is diffusion-limited. By promoting association,
the protein may be enhanced for its application.


Acknowledgements

AESOP is developed in the Biomolecular Modeling and design Lab (BioMoDeL [http://biomodel.engr.ucr.edu]) under the supervision of Professor
Dimitrios Morikis.  The python library of AESOP is developed by Reed Harrison and Rohith Mohan [Harrison2016], and
is based on the original AESOP framework, written in R, that was developed and parametrized by Chris Kieslich
and Ronald Gorham [Kieslich2011-1] [Gorham2011-1] [Gorham2011-2] [Kieslich2011-2]. A preliminary computational protocol for electrostatic similarities that preceded
AESOP was developed by Jianfeng Yang.

The AESOP acronym stands for Analysis of Electrostatic Structures Of Proteins.
The original AESOP acronym stood for Analysis of Electrostatic Similarities Of Proteins.




References


	Harrison2016

	Harrison REH, Mohan RR, Gorham RD Jr, Kieslich CA, Morikis D (2016, in submission) AESOP: A Python Library for Investigating Electrostatics in Protein Interactions



	Kieslich2011-1

	Kieslich, C.A., R.D. Gorham, and D. Morikis. 2011. Is the rigid-body assumption reasonable?: Insights into the effects of dynamics on the electrostatic analysis of barnase-barstar. J. Non. Cryst. Solids. 357: 707?716. [https://doi.org/10.1016/j.jnoncrysol.2010.05.087].



	Gorham2011-1

	Gorham, R.D., C.A. Kieslich, and D. Morikis. 2011. Electrostatic clustering and free energy calculations provide a foundation for protein design and optimization. Ann. Biomed. Eng. 39: 1252?1263. [https://doi.org/10.1007/s10439-010-0226-9].



	Gorham2011-2

	Gorham, R.D., C.A. Kieslich, A. Nichols, N.U. Sausman, M. Foronda, and D. Morikis. 2011. An evaluation of Poisson-Boltzmann electrostatic free energy calculations through comparison with experimental mutagenesis data. Biopolymers. 95: 746?754. [https://doi.org/10.1002/bip.21644].



	Kieslich2011-2

	Kieslich, C.A., D. Morikis, J. Yang, and D. Gunopulos. 2011. Automated computational framework for the analysis of electrostatic similarities of proteins. Biotechnol. Prog. 27: 316?325. [https://doi.org/10.1002/btpr.541].








Published applications of AESOP

The following references are examples of analyses that AESOP can perform.


	Chen2015

	Chen C, Gorham RD Jr., Gaieb Z, and Morikis D (2015) Electrostatic interactions between complement regulator CD46(SCR1-2) and adenovirus Ad11/Ad21 fiber protein knob, Molecular Biology International, 2015: Article ID 967465. 15 pages. DOI:10.1155/2015/967465.



	Harrison2015

	Harrison RES, Gorham RD Jr, Morikis D (2015) Energetic evaluation of binding modes in the C3d and Factor H (CCP 19-20) complex, Protein Science 24:789-802. DOI:10.1002/pro.2650.



	Mohan2015

	Mohan R, Gorham RD Jr, Morikis D (2015) A theoretical view of the C3d:CR2 binding controversy, Molecular Immunology 64:112:122. DOI:10.1016/j.molimm.2014.11.006.



	Liu2014

	Liu Y, Kieslich CA, Morikis D, Liao J (2014) Engineering pre-SUMO4 as efficient substrate of SENP2, Protein Engineering Design & Selection 27:117-126. DOI: 10.1093/protein/gzu004.



	Gorham2014

	Gorham RD Jr, Rodriguez W, Morikis D (2014) Molecular analysis of the interaction between staphylococcal virulence factor Sbi-IV and complement C3d, Biophysical Journal 106:1164-1173. DOI: 10.1016/j.bpj.2014.01.033.



	Kieslich2012

	Kieslich CA, Morikis D (2012) The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity, PLoS Computational Biology 8:e1002840 (8 pages). DOI: 10.1371/journal.pcbi.1002840.






	Bellows-Peterson2012

	Bellows-Peterson ML, Fung H, Floudas CA, Kieslich CA, Zhang L, Morikis D, Wareham KJ, Monk PN, Hawksworth O, Woodruff TM (2012) De novo peptide design with C3a receptor agonist and antagonist activities: theoretical predictions and experimental validation, Journal of Medicinal Chemistry 55:4159-4168.






	Gorham2012

	Gorham Jr RD, Kieslich CA, Morikis D (2012) Complement inhibition by Staphylococcus aureus: electrostatics of C3d-EfbC and C3d-Ehp association, Cellular and Molecular Bioengineering 5:32-43.



	El-Assaad2011

	El-Assaad AM, Kieslich CA, Gorham Jr RD, Morikis D (2011) Electrostatic exploration of the C3d-FH4 interaction using a computational alanine scan, Molecular Immunology 48:1844-1850. Erratum (2013) 53:173-174.



	Hakkoymaz2011

	Hakkoymaz H, Kieslich CA, Gorham Jr RD, Gunopulos D, Morikis D (2011) Electrostatic similarity determination using multi-resolution analysis, Molecular Informatics 30:733-746.



	Kieslich2011-3

	Kieslich CA, Vazquez H, Goodman GN, L?pez de Victoria A, Morikis D (2011) The effect of electrostatics on Factor H function and related pathologies, Journal of Molecular Graphics and Modeling 29:1047-1055.



	Chae2010

	Chae K, Gonong BJ, Kim SC, Kieslich CA, Morikis D, Balasubramanian S, Lord EM (2010) A multifaceted study of stigma/style cysteine-rich adhesion (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction, Journal of Experimental Botany 61:4277-4290.











          

      

      

    

  

    
      
          
            
  
Installation

AESOP is a Python 2.7 library, and is not compatible with Python 3.


Anaconda installation

We recommend installing the Anaconda Python Distribution as it comes with several packages used by AESOP pre-installed.
Anaconda can be downloaded from here [https://www.continuum.io/downloads]. If you choose this route, install Anaconda2. Anaconda3 is not compatible with AESOP.


Caution

The 64-bit version is recommended for Linux, Mac OS, and Windows. To install ProDy in 64-bit windows,
you can use an installer from PyPI. If you have issues with a 64-bit installation, AESOP should be
compatible with a 32-bit Python installation, though it is not as well tested.






Install PDB2PQR, APBS and Coulomb

Please download and install the appropriate version of PDB2PQR [https://sourceforge.net/projects/pdb2pqr] and APBS [https://sourceforge.net/projects/apbs] (Coulomb installs alongside APBS) for your operating system. Ensure that the executables are added to your path by running the executable in terminal/command prompt:

apbs

pdb2pqr






Note

Linux users: Add the directories containing the apbs, pdb2pqr, and coulomb executables to path in your ~/.profile. As an example:

export PATH=/opt/pdb2pqr-linux-bin64-2.1.0:$PATH
export PATH=/opt/APBS-1.4.2.1-linux64/bin:$PATH
export PATH=/opt/APBS-1.4.2.1-linux64/share/apbs/tools/bin:$PATH





You may encounter issues with PDB2PQR if you are using an older version that uses the pdb2pqr.py script. In this case,
either update to a newer binary PDB2PQR distribution, or specify the full path to pdb2pqr.py in AESOP.

Mac users: If you are using the APBS binary/executable to install (as opposed to compiling from source), you may need to add the following line to your path:

export PATH=$PATH:`dirname '/Applications/APBS.app/Contents/MacOS/apbs_term'`





Then you may add the pdb2pqr executable to path as in the Linux case

Windows users: Navigate to system settings (Control panel > System and Security > System) and click advanced settings. Select the
environment variables box and edit the Path variable for the system or for the user. Append the paths to the directories
containing the apbs, pdb2pqr, and coulomb executables (each as a separate entry in the Path variable).






Install other dependencies

ProDy:

pip install prody






Note

If pip is unable to install prody (which is likely to happen if you are running a Windows operating system),
then you may download installation materials appropriate for your OS directly from the
PyPI website [https://pypi.python.org/pypi/ProDy]. For Windows, it is typically easier to use the appropriate
installation executable appropriate for your Python 2.7 installation (choose amd64 for 64-bit Python 2.7 and choose
win32 for 32-bit Python 2.7). As a reminder, AESOP is only compatible with Python 2.7.



Modeller:

conda config --add channels salilab
conda install modeller






Note

Modeller will require users to have a license key.
Registration is located at the Sali Lab Website [https://salilab.org/modeller/].
The Modeller license key will be used in the following manner:

Edit //anaconda/lib/modeller-9.17/modlib/modeller/config.py
and replace XXXX with your Modeller license key
(or set the KEY_MODELLER environment variable before running ‘conda install’).



Multiprocessing (optional):

pip install multiprocessing






Note

Multiprocessing is only needed if you are planning to utilize multiple cores in your analysis.



NetworkX (optional):

conda install networkx






Note

NetworkX is only required for the plotNetwork utility.



Plotly (optional):

pip install plotly






Note

Plotly is only required for the interactive plotting functions such as plotScan_interactive, plotNetwork_interactive, and plotESD_interactive.






Installing AESOP

You can install AESOP from PyPi [https://pypi.python.org/] using:

pip install aesop





If you already have it installed, you can upgrade to the latest version using:

pip install --upgrade aesop





If you are having issues installing through PyPi, you may try to Install from source.




Install from source

To install from source, you can use the following commands to clone the GitHub repository and install manually:

git clone git@github.com:rohithmohan/aesop.git
cd aesop-python
pip install setup.py






Note

This may require administrative privileges.









          

      

      

    

  

    
      
          
            
  
Preparing PDB Files

AESOP requires protein structures that comply with the PDB format. Given a structure from the
Protein Data Bank, the user needs to consider that coordinates for some atoms
may not be resolved in the deposited structure. Thus, residues may be missing from a protein
even though the sequence may be known. To fix such issues, the user must perform homology
modelling to model and refine gaps. A number of computational tools exist to add these missing
residues including Modeller, PDBFixer, UCSF Chimera, Pymol, and SWISS-MODEL [https://swissmodel.expasy.org/].
If you are willing to install OpenMM and all other libraries within the OMNIA [http://www.omnia.md] channel,
then PDBFixer [https://github.com/pandegroup/pdbfixer] may be installed through anaconda quite easily
and offers a simple graphical user interface for PDB preparation.

If the PDB contains all residues but is missing a few atoms in one or more residues, AESOP has a
function that will call complete_pdb from Modeller to fill in missing atoms. You may use the function
as follows:

from aesop import complete_structure

pdbfile = 'input.pdb'
outfile = 'output.pdb'

complete_structure(pdb=pdbfile, dest=outfile, disu=False)





The above snipped of code reads input.pdb, fills in missing atoms (not missing residues), and
writes the completed structure to output.pdb. If input.pdb has disulfide bridges, simply
set disu=True to predict and patch disulfides.

While AESOP will handle protein structures where residue numbering overlaps between protein chains,
we advise users to make sure only a single model is present in the PDB file to prevent unforseen
complications. Additionally, each chain should be represented by a unique identifier that complies
with the PDB format.





          

      

      

    

  

    
      
          
            
  
Atomic Selections

In order to allow for advanced atomic selections with protein structures, AESOP utilizes selection
macros from ProDy. Using these macros, the end user can easily string together boolean statements based
on protein chains, residue numbers, amino acid, atom name, physicochemical properties, or even distance
criteria that describe the portion of the protein structure file to select. For more examples and
explanations concerning selection strings please see the ProDy webpage for atomic selections [http://prody.csb.pitt.edu/manual/reference/atomic/select.html].


Basic Examples

Selection string for chain A of a PDB file:

'chain A'





Selection string for chain A and residue numbers 1 to 100:

'chain A and resnum 1 to 100'





Selection string for chain A and protein:

'chain A and protein'





Selection for chain A or chain C:

'chain A or chain C'








Alanine scan example

For the alanine scan, we suggest each element of the selstr list contains a separate chain:

selstr = ['chain A', 'chain B', 'chain C']





Ideally, all chains used should comprise a single protein complex. In case the protein complex is
quite large and only a handful of mutations are of interest to the end-user, then the region argument
may be used to restrict selstr to some subset of residues. For this reason, region should be a list
of the same length as selstr. In the current example, if we only wish to mutate residues within 10
angstroms of chain C, then you could specify region in the following manner:

region = ['within 10 of chain C', 'within 10 of chain C', 'within 10 of chain C']





Once again, for in depth discussion of more complicated selection strings, please refer to the ProDy
website [http://prody.csb.pitt.edu/manual/reference/atomic/select.html].




DirectedMutagenesis scan example

For the directed mutagenesis scan, the user must specify the subunits of the protein complex (selstr),
the targeted residue(s) to mutate (target), and mutation to perform (mutation). As in the alanine scan,
we suggest each element of selstr to contain a separate chain of the protein complex:

selstr = ['chain A', 'chain B']





In order to specify targeted residues to mutate, each element of target must contain all residues
that will be mutated. Since residue numbers may overlap between chains of the protein structre, the user
may need to additionally specify a chain. For example:

target = ['resnum 50', 'resnum 50 in chain B', '(resnum 50 or resnum 60) and chain B']





In the first element (‘resnum 50), all residues with residue number 50 will be mutated. In the second element
(‘resnum 50 in chain B’), only the residue with number 50 in chain B will be mutated. In the third element
(‘(resnum 50 or resnum 60) and chain B’), only residues numbered 50 or 60 in chain B will be mutated.

Next, the user must specify how to mutate each element of target by specifying a 3 letter amino acid code for
each element of the target. These codes should be stored in a list (here, we use the variable name mutation):

mutation = ['ALA', 'ARG', 'ASP']





Since each element of target corresponds to each element of mutation, the mutations specified above will perform several different
mutations. Namely, residues selected by the first element of target will be mutated to alanine; residues selected by the
second element of target will be mutated to arginine; and residues selected by the third element of target will be mutated
to aspartatic acid. Currently AESOP does not support mutation of two amino acids to two different amino acids simultaneously,
though this may be added as a feature in the future. In general, we prefer to mutate one amino acid at a time to prevent
significantly changing the structure of the native protein throughout the analysis.







          

      

      

    

  

    
      
          
            
  
Electrostatic Similarity

The electrostatic similarity method generates grid potentials for a list of PDB files and compares
all potential files in a pairwise manner. Here we will provide test cases that compares several
members of a family of plant proteins. You may download all necessary files for these examples at this link:
download. These examples are based on a more comprehensive,
published study [Chae2010].







	ElecSimilarity(pdbfiles[, pdb2pqr_exe, …])

	Summary







Note

The ElecSimilarity method should only be used to compare structurally and functionally similar proteins.
Additionally, all protein structure file should be superposed in a consistent grid space. While the method
implements a superpositioning algorithm from Modeller, the user should verify that the final structures are
suitably superposed. For some applications, users may aquire better results with a different superpositioning
scheme. These structure files can be found in the pdb_files or pqr_files folder within
the job directory.




Example case 1: LTP plant proteins

Open a new python session, import the ElecSimilarity class, and import the plotDend and plotESD functions:

from aesop import ElecSimilarity, plotDend, plotESD






Warning

If you are planning to leverage multiple CPU threads for a faster analysis, please know
that extra steps may be required. Specifically, you must protect the entry point of the
program according to multiprocessing documentation. You may do this by putting the following
code at the beginning of your Python script:

if __name__ == '__main__':
    # place remaining code here and maintain level of indentation





This precaution becomes unnecessary if you are running the analysis inside an interactive
Python session. In the downloadable zip files, we have already placed this protection in
the run script, so that you may run the analysis as follows in your platform’s terminal:

python run_ltp_ex1.py





Failure to protect the entry point may result in an infinite loop of process spawning.



Next, you must specify the full paths to your apbs and pdb2pqr executables, if
the paths for the directories containing the executables have not already been added to the environment.
Here is an example for a Windows system:

path_apbs    = 'C:\\APBS\\apbs.exe'
path_pdb2pqr = 'C:\\PDB2PQR\\pdb2pqr.exe'





Now we will specify what PDB files the method should compare. Here we will use only 3 PDB files
(download). After downloading the PDB files, unzip them and place
them in the current working directory:

pdbfiles = ['1MZL.pdb', 'SCA1.pdb', 'SCA3.pdb']






Warning

If you are using your own PDB, make sure the PDB contains no missing heavy atoms. Consider also removing non-standard
amino acids. PDBFixer is one option for cleaning PDB files in preparation for AESOP.




Note

If you only provide a single PDB file, AESOP will generate a library of mutants by side-chain truncation
as in the Alascan class. You can force the ElecSimilarity class to generate mutants for all structures
by specifying a list of selection strings that describe all regions of the PDB to mutate.



When the method is run, intermediate files will be generated and stored in a folder of the current
working directory. The user has the option of naming this folder by specifying a job name:

jobname = 'LTP_test1'





Next, the method is initialized by:

family = ElecSimilarity(pdbfiles=pdbfiles,
                        pdb2pqr_exe=path_pdb2pqr,
                        apbs_exe=path_apbs,
                        jobname=jobname)





Finally, we are ready to run the analysis. To superpose structures before running, set superpose
to True (please not that this superpositioning algorithm requires the Modeller library).
To center structures before running, set center to True. Ideally, the end user should
ensure that all PDB structures have consistent coordinates. This analysis will take several minutes,
so please be patient:

family.run(superpose=True, center=False)





If you are running your analysis on a workstation and want to parallelize the calculation, then you may do
so as follows:

family.run_parallel(superpose=True, center=False)





After the run is complete, AESOP will report if any Warnings or Errors were detected in APBS or PDB2PQR.
The full logs are stored in the family.logs and can be viewed or written to file in the following manner:

family.viewLogs()
family.writeLogs(filename="family_logs.txt")





You can view results using built-in functions:

plotDend(family, filename='dend.png')
plotESD(family, filename='esd.png')





plotDend should produce a dendrogram similar to the following figure.

[image: alternate text]
Proteins that cluster together at lower ESD in the dendrogram are expected to be electrostatically similar.

plotESD should produce a heatmap similar to the following figure.

[image: alternate text]
This heatmap compares all protein pairs in terms of ESD. Lower values once again indicate electrostatic similarity.

If you would like to utilize the interactive plotting function plotESD_interactive which generates a heatmap and dendrogram, refer
to this notebook demonstration [https://nbviewer.jupyter.org/github/BioMoDeL/aesop/blob/master/docs/LTP_family_1.ipynb].

If you prefer to export the raw data, you can access the ESD matrix:

data = family.esd





Other modules such as numpy (example below) or pandas will allow exporting of the ESD matrix to file:

import numpy as np
np.savetxt('esd_matrix.txt', data, fmt='%.4f')





The ElecSimilarity class also supports calculation of the electrostatic similarity index (ESI) by comparing
potentials across all protein structures at corresponding grid points. If you previously calculated the ESD,
then you need type the following to perform this calculation:

family.calcESI()





If you prefer to calculate ESI instead of ESD, you may do so at the time you run the analysis:

family.run(esi=True, esd=False, superpose=True)
family.run_parallel(esi=True, esd=False, superpose=True)





After performing the ESI calculation, you may view the ESI values by loading the DX file that is located
within the “esi_files” folder of the job directory.




Example case 2: Alascan of a LTP plant protein

AESOP is additionally capapable of comparing electrostatic potentials of alanine mutants for a protein structure.
The process follows many of the same steps from example case 1:

from aesop import ElecSimilarity, plotDend, plotESD

path_apbs    = 'C:\\APBS\\apbs.exe'
path_pdb2pqr = 'C:\\PDB2PQR\\pdb2pqr.exe'
pdbfiles     = ['1MZL.pdb']
jobname      = 'LTP_test2'

family = ElecSimilarity(pdbfiles=pdbfiles, pdb2pqr_exe=path_pdb2pqr, apbs_exe=path_apbs, jobname=jobname)





The analysis can be run with the same run or run_parallel methods as before; however, AESOP will only know to
generate a family of alanine mutants if the length of the pdbfiles is 1 or if selstr is specified in the run statement.
selstr will tell AESOP to mutate all ionizable amino acids selected by any of the elements of the list. Only one amino
acid will be mutated at a time. The following is an example run statement that will generate mutants for all ionizable amino acids
in the 1MZL pdb file:

family.run(superpose=False, esd=True, esi=True, selstr=['protein'])








References


	Chae2010

	Chae, K., B.J. Gonong, S.C. Kim, C.A. Kieslich, D. Morikis, S. Balasubramanian, and E.M. Lord. 2010. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction. J. Exp. Bot. 61: 4277–4290 [https://doi.org/10.1093/jxb/erq228].











          

      

      

    

  

    
      
          
            
  
Alanine Scan

Given a PDB structure of atomistic resolution, the alanine scan method iteratively perturbs the native
structure by mutating single amino acids to alanine one residue at a time. In this manner, the method
can predict those mutations that are predicted to significantly affect the free energy of association for
a complex according to the thermodynamic cycle. For reference, please refer to [Kieslich2011-2] and
[Gorham2011-2] as they present published results for the Barnase-Barstar test system. You may download all
necessary files for this example at this link: download.







	Alascan(pdb[, pdb2pqr_exe, apbs_exe, …])

	Summary Summary of internal varialbles in the Alascan class.







Example case: Barnase-Barstar

Open a new python session, import the Alascan class, and import the plotScan function:

from aesop import Alascan, plotScan, writePDB
try:
    from aesop import plotNetwork
except:
    print 'Unable to import plotNetwork, is the NetworkX library installed?'






Warning

If you are planning to leverage multiple CPU threads for a faster analysis, please know
that extra steps may be required. Specifically, you must protect the entry point of the
program according to multiprocessing documentation. You may do this by putting the following
code at the beginning of your Python script:

if __name__ == '__main__':
    # place remaining code here and maintain level of indentation





This precaution becomes unnecessary if you are running the analysis inside an interactive
Python session. In the downloadable zip files, we have already placed this protection in
the run script, so that you may run the analysis as follows in your platform’s terminal:

python run_alascan.py





Failure to protect the entry point may result in an infinite loop of process spawning.



Next, you must specify the full paths to your apbs, coulomb, and pdb2pqr executables, if
the paths for the directories containing the executables have not already been added to the environment.
Here is an example for a Windows system:

path_apbs    = 'C:\\APBS\\apbs.exe'
path_coulomb = 'C:\\APBS\\coulomb.exe'
path_pdb2pqr = 'C:\\PDB2PQR\\pdb2pqr.exe'





Next we will specify the jobname and pdbfile to used in the method. After running the alanine scan, jobname
will be used to create a folder where files for the method will be generated. You can download the PDB file
for this example from this link (download).
Make sure you place the PDB in your working directory:

jobname = 'alascan'
pdbfile = 'barnase_barstar.pdb'






Warning

If you are using your own PDB, make sure the PDB contains no missing heavy atoms. Consider also removing non-standard
amino acids. PDBFixer is one option for cleaning PDB files in preparation for AESOP.



The Alascan class will need to know how to define each subunit of the protein complex. To do this,
the user should specify a list of selection strings. Each element of the list should be a stand-alone
selection string that fully describes how to select the associated subunit. If the selection string
list has only 1 element, then be aware that you may only calculate solvation free energies as no
association of subunits occurs. In this example, barnase is chain A, and barstar is chain B. Thus,
we specify the selection string in the following manner:

selstr = ['chain A', 'chain B']





Finally, we may initialize the Alanine scan class:

alascan = Alascan(pdb=pdbfile,
                  pdb2pqr_exe=path_pdb2pqr,
                  apbs_exe=path_apbs,
                  coulomb_exe=path_coulomb,
                  jobname=jobname,
                  selstr=selstr,
                  minim=False)





Note that by default the Alanine scan class will not minimize the structure of mutants. Since the Alascan
class seeks to quantify the electrostatic contribution of each amino acid, minimization is unnecessary for
our purposes. No clashes should be introduced by the side-chain truncation mutation scheme. If you still
prefer to perform minimization, please set minim=True when the class is initialized. In either case,
results with or without minimization should be extremely similar.

Alternatively, if paths to apbs, coulomb and pdb2pqr are already added to environment then you may initialize as follows:

alascan = Alascan(pdb=pdbfile, jobname=jobname, selstr=selstr)





After initialization, you can run the analysis in series:

alascan.run()





… or you can run the analysis in parallel on a certain number of threads (don’t pass a number
if you wish to use half of available threads):

alascan.run_parallel(6)





After the run is complete, AESOP will report if any Warnings or Errors were detected in APBS or PDB2PQR.
The full logs are stored in the alascan.logs and can be viewed or written to file in the following manner:

alascan.viewLogs()
alascan.writeLogs(filename="alascan_logs.txt")





Once complete, you can view the results as a barplot:

plotScan(alascan, filename='alascan.png')





You should end up with a figure similar to the following image:

[image: alternate text]
In this figure, mutations that result in positive ddGa values relative to the parent structure suggest loss of binding mutations.
This outcome indicates the mutated amino acid was involved in an overall favorable network of electrostatic interactions in the
parent structure. Mutations that result in negative ddGa values relative to the parent structure suggest gain of binding mutations.
This outcome indicates the mutated amino acid was involved in an overall unfavorable network of electrostatic interactions in the
parent structure.

Alternatively, you can view the results as a network if you have installed the NetworkX library:

try:
    plotNetwork(alascan, filename='network.png')
except:
    print 'Skipping plotNetwork example!'





You can ignore the try/except blocks with general use. These are here only for those users who do not wish to install Networkx.
The network should look similar to the following with standard parameters:

[image: alternate text]
In this figure, nodes are amino acid with significant energy effects. That is, when the residue is mutated the change in free
energy of association relative to the parent structure is outside thermal effects (greater than 2.5 kJ/mol or less than -2.5
kJ/mol). Colors of each node are scaled according to the value of this energy, and edges are drawn between Coulombic interactions
that occur within some distance cutoff (5 angstroms by default). Node labels consist of the one-letter amino acid code, the
residue number, and the chain where the residue is located, in that order. For instance, R83A is arginine 83 on chain A.

If you would like to utilize the interactive plotting functions plotScan_interactive and plotNetwork_interactive, refer
to this notebook demonstration [https://nbviewer.jupyter.org/github/BioMoDeL/aesop/blob/master/docs/barnase_barstar_alascan.ipynb].

You may also extract the free energies of association and the associated mutation ids:

mut_ids  = alascan.getMutids()
energies = alascan.ddGa_rel()





If you wish, you can use build in function to summarize results. If the file name is not
specified for the summary, then the summary is simply printed to STDOUT:

alascan.summary(filename='alascan_summary.txt')





Finally, you may export a PDB file with ddGa values for each residue in the beta-factor column as follows:

writePDB(alascan, filename='alascan.ddGa.pdb')








References


	Kieslich2011-2

	Kieslich, C.A., R.D. Gorham, and D. Morikis. 2011. Is the rigid-body assumption reasonable?: Insights into the effects of dynamics on the electrostatic analysis of barnase-barstar. J. Non. Cryst. Solids. 357: 707–716. [https://doi.org/10.1016/j.jnoncrysol.2010.05.087].



	Gorham2011-2

	Gorham, R.D., C.A. Kieslich, A. Nichols, N.U. Sausman, M. Foronda, and D. Morikis. 2011. An evaluation of Poisson-Boltzmann electrostatic free energy calculations through comparison with experimental mutagenesis data. Biopolymers. 95: 746–754. [https://doi.org/10.1002/bip.21644].











          

      

      

    

  

    
      
          
            
  
Directed Mutagenesis Scan

The directed mutagenesis scan is similar to the alanine scan, except it requires specific information
about what mutations to perform. Additionally, this method requires an external python library named
Modeller. This dependency facilitates more complicated mutations; however, it also requires the method
to perform more calculations than for the side-chain truncation method of the alanine scan. For
reference, please refer to [Kieslich2011-2] and [Gorham2011-2] as they present published results
for the Barnase-Barstar test system. You may download all necessary files for this example at this
link: download.







	DirectedMutagenesis(pdb, target, mutation[, …])

	Summary







Example case: Barnase-Barstar

Open a new python session, import the DirectedMutagenesis class, and import the plotScan function:

from aesop import DirectedMutagenesis, plotScan, writePDB






Warning

If you are planning to leverage multiple CPU threads for a faster analysis, please know
that extra steps may be required. Specifically, you must protect the entry point of the
program according to multiprocessing documentation. You may do this by putting the following
code at the beginning of your Python script:

if __name__ == '__main__':
    # place remaining code here and maintain level of indentation





This precaution becomes unnecessary if you are running the analysis inside an interactive
Python session. In the downloadable zip files, we have already placed this protection in
the run script, so that you may run the analysis as follows in your platform’s terminal:

python run_mutagenesis.py





Failure to protect the entry point may result in an infinite loop of process spawning.



Next, you must specify the full paths to your apbs, coulomb, and pdb2pqr executables, if
the paths for the directories containing the executables have not already been added to the environment.
Here is an example for a Windows system:

path_apbs    = 'C:\\APBS\\apbs.exe'
path_coulomb = 'C:\\APBS\\coulomb.exe'
path_pdb2pqr = 'C:\\PDB2PQR\\pdb2pqr.exe'





Now we will specify the jobname and pdbfile to used in the method. After running the directed mutagenesis
scan, jobname will be used to create a folder where files for the method will be generated. You can download
the PDB file for this example from this link (download).
Make sure you place the PDB in your working directory:

jobname = 'directedscan'
pdbfile = 'barnase_barstar.pdb'






Warning

If you are using your own PDB, make sure the PDB contains no missing heavy atoms. Consider also removing non-standard
amino acids. PDBFixer is one option for cleaning PDB files in preparation for AESOP.



The DirectedMutagenesis class will need to know how to define each subunit of the protein complex. To do
this, the user should specify a list of selection strings. Each element of the list should be a stand-alone
selection string that fully describes how to select the associated subunit. If the selection string
list has only 1 element, then be aware that you may only calculate solvation free energies as no
association of subunits occurs. In this example, barnase is chain A, and barstar is chain B. Thus,
we specify the selection string in the following manner:

selstr = ['chain A', 'chain B']





Next, the DirectedMutagenesis will need to know what residues to mutate and the mutation to perform.
To accomplish this, we specify another list of selection strings where each element of the list specifies
a single residue from the PDB file:

target = ['resnum 27',  'resnum 73',  'resnum 83',  'resnum 87',  # mutations in chain A
          'resnum 145', 'resnum 149', 'resnum 164', 'resnum 186'] # mutations in chain B





For each mutation target, an amino acid must be specified using the associated 3 letter code for
the mutation. Remember respective elements in target and mutation are linked:

mutation = ['ASP', 'LYS', 'GLU', 'GLU', # mutations in chain A
            'ARG', 'ARG', 'ASP', 'LYS'] # mutations in chain B





Finally, we may initialize the DirectedMutagenesis scan class:

mutscan = DirectedMutagenesis(pdb=pdbfile,
                              pdb2pqr_exe=path_pdb2pqr,
                              apbs_exe=path_apbs,
                              coulomb_exe=path_coulomb,
                              jobname=jobname,
                              selstr=selstr,
                              target=target,
                              mutation=mutation,
                              minim=True)





After initialization, you can run the analysis in series:

mutscan.run()





… or you can run the analysis in parallel on a certain number of threads:

mutscan.run_parallel(6)





After the run is complete, AESOP will report if any Warnings or Errors were detected in APBS or PDB2PQR.
The full logs are stored in the mutscan.logs and can be viewed or written to file in the following manner:

mutscan.viewLogs()
mutscan.writeLogs(filename="mutscan_logs.txt")





Once complete, you can view the results as a barplot:

plotScan(mutscan, filename='directedmutagenesis.png')





You should end up with a figure similar to the following image:

[image: alternate text]
In this figure, mutations that result in positive ddGa values relative to the parent structure suggest loss of binding mutations.
This outcome indicates the mutated amino acid was involved in an overall favorable network of electrostatic interactions in the
parent structure. Mutations that result in negative ddGa values relative to the parent structure suggest gain of binding mutations.
This outcome indicates the mutated amino acid was involved in an overall unfavorable network of electrostatic interactions in the
parent structure.

If you would like to utilize the interactive plotting functions plotScan_interactive and plotNetwork_interactive, refer
to this notebook demonstration [https://nbviewer.jupyter.org/github/BioMoDeL/aesop/blob/master/docs/barnase_barstar_directedmutagenesis.ipynb].

You may also extract the free energies of association and the associated mutation ids:

mut_ids  = mutscan.getMutids()
energies = mutscan.ddGa_rel()





If you wish, you can use build in function to summarize results. If the file name is not
specified for the summary, then the summary is simply printed to STDOUT:

mutscan.summary(filename='mutscan_summary.txt')





Finally, you may export a PDB file with ddGa values for each residue in the beta-factor column as follows:

writePDB(mutscan, filename='mutscan.ddGa.pdb')








References


	Kieslich2011-2

	Kieslich, C.A., R.D. Gorham, and D. Morikis. 2011. Is the rigid-body assumption reasonable?: Insights into the effects of dynamics on the electrostatic analysis of barnase-barstar. J. Non. Cryst. Solids. 357: 707–716. [https://doi.org/10.1016/j.jnoncrysol.2010.05.087].



	Gorham2011-2

	Gorham, R.D., C.A. Kieslich, A. Nichols, N.U. Sausman, M. Foronda, and D. Morikis. 2011. An evaluation of Poisson-Boltzmann electrostatic free energy calculations through comparison with experimental mutagenesis data. Biopolymers. 95: 746–754. [https://doi.org/10.1002/bip.21644].











          

      

      

    

  

    
      
          
            
  
API


Package

The aesop submodule contains all relevant classes and functions for the AESOP package.




AESOP contents


	
exception aesop.aesop.APBS_Exception

	Bases: exceptions.Exception






	
class aesop.aesop.Alascan(pdb, pdb2pqr_exe='pdb2pqr', apbs_exe='apbs', coulomb_exe='coulomb', selstr=['protein'], jobname=None, region=None, grid=1, ion=0.15, pdie=20.0, sdie=78.54, ff='parse', cfac=1.5, dx=False, minim=False)

	Summary
Summary of internal varialbles in the Alascan class.
All parameters are set in the Alascan.__init__(…)
and the analysis is run with Alascan.run().


	Attributes

	
	apbsstr

	Full path to APBS executable. Must be compatible with OS.



	apbs_resultsstr

	Full path to output from APBS



	cfacfloat

	Scaling factor for grid dimensions. We suggest to leave this
unchanged.



	coulombstr

	Full path to coulomb executable from APBS package.
Must be compatible with OS.



	coulomb_resultsstr

	Full path to folder containing results from coulomb.



	dimelist

	List of three integers. Parameter required for APBS.
Please see description at:
http://www.poissonboltzmann.org/docs/apbs-overview/



	disubool, optional

	If True, Modeller will guess the patches for disulfide bridges
within the provided protein structures. Only relevant if minim
is set to Trueself.



	dxbool

	Variable that specifies if potential files should be written to disk.
Default is False.



	dx_fileslist

	If written to disk, list of potential files written to disk.
The folder containing these files is given by Alascan.apbs_results.



	E_refndarray

	Description



	E_solvndarray

	Description



	ffstr

	Force-field to use for PDB2PQR



	file_pdb_templateTYPE

	Description



	gcentlist

	List of three integers. Parameter required for APBS.
Please see description at:
http://www.poissonboltzmann.org/docs/apbs-overview/



	Gcoulndarray

	Coulombic free energies, corresponding to Alascan.mutid.



	glenlist

	List of three integers. Parameter required for APBS.
Please see description at:
http://www.poissonboltzmann.org/docs/apbs-overview/



	Grefndarray

	Reference-state free energies, corresponding to Alascan.mutid.



	gridnumeric

	Distance spacing of grid points.
If the grid dimensions are not divisible by three,
resolution will be increased (smaller grid spacing) until
grid dimensions are divisible by three.



	Gsolvndarray

	Solvated-state free energies, corresponding to Alascan.mutid.



	ionnumeric

	Ionic strength to be used in the solvated-state APBS calculations.



	jobdirstr

	[Optional] Path to folder containing results.
If not specified, a directory will be generated.



	jobnamestr

	[Optional] Name for current job, will be used to create the jobdir.



	list_chidslist

	Chain ID where mutation was made. Corresponds to Alascan.mutid.



	list_resnameslist

	Residue names where mutation was made. Corresponds to Alascan.mutid.



	list_resnumslist

	Residue numbers where mutation was made. Corresponds to Alascan.mutic.



	logslist

	List of strings that represent the log files from every executable
called (namely, PDB2PQR and APBS)



	logs_apbs_dirstr

	Folder in jobdir containing output from
APBS (logs, input files, dx files)



	mask_by_selndarray

	Matrix containing selection masks. The first column corresponds
to the selection string for the parent and each column
thereafter corresponds to an element of the selection
string (selstr) in the same order.



	max_iterinteger, optional

	If minimization is to be performed, this parameter limits the
maximum number of calls to the objective function before
minimization is terminated. Default is 1000 iterations.



	min_atom_shiftfloat, optional

	If minimization is to be performed, this parameter will determine
the convergence criteria. If the maximum atomic shift for all atoms
between minimization steps is less than this value, then
minimization is terminated. Default value is 0.1 angstroms.



	minimbool, optional

	If True, minimization will be performed with Modeller’s conjugate
gradient descent algorithm. Default is False for the Alanine scan
class as no clashes should result from mutations.



	mutidlist

	List of mutant IDs. The first element corresponds to the parent.
Subsequent elements correspond to each element of the
selection string list (selstr). Please use Alascan.getMutids()
to get vectorized version.



	outputstring, optional

	If minimization is performed, this parameter deterimines what
output to STDOUT Modeller will use. ‘NO_REPORT’ results in a
minimal output to STDOUT, while ‘REPORT’ results in a more
verbose output to STDOUT.



	pdbstr

	Path to PDB file with atomic coordinates. Must follow formatting
conventions of the Protein Databank.



	pdb2pqrstr

	Full path to PDB2PQR executable.



	pdb_complex_dirstr

	Folder name in the job directory that contains the PDB file(s) of
the complex structures.



	pdienumeric

	Protein dielectric constant to be used in APBS.



	pqr_complex_dirstr

	Folder name in the job directory containing PQR files for each
protein complex.



	pqr_sel_dirlist

	List of folder names in the job directory that contain PQR files for
selection strings (selstr). Each element of pqr_sel_dir corresponds
to the same element of selstr.



	regionlist

	List of additional selection strings specifying the zone where
mutations should occur. Generally unused, unless a region of interest
is involved. Each element of region should correspond to the same
element of selstr. That is, each region selection string will futher
narrow down the initial selection string.



	sdienumeric

	Solvent dielectric constant to be used in APBS.



	selstrlist

	List of selection strings. Typically each selection string will
correspond to a chain in a protein complex. We advise users to
specify two or more selection strings. (Ex: [‘chain A’, ‘chain B’])









Methods







	calcAPBS()

	Summary Run APBS on each structure in mutant library, in serial.



	calcAPBS_parallel([n_workers])

	Summary Run APBS on each structure in mutant library, in parallel.



	calcCoulomb()

	Summary Calculates Coulombic free energies with coulomb.exe from the APBS toolbox.



	calcCoulomb_parallel([n_workers])

	Summary Calculates Coulombic free energies with coulomb.exe from the APBS toolbox in a parallel manner.



	calcESI([idx])

	Summary



	dGsolv_rel()

	Summary Calculates and returns the free energy of a solvation for each mutant relative to the parent free energy of solvation.



	ddGa_rel()

	Summary Calculates and returns the free energy of association relative to the parent free energy of association.



	find_grid()

	Summary



	genDirs()

	Summary This subroutine will generate all directories needed to contain structural files, logs, etc.



	genMutid()

	Summary This subroutine reads the input PDB, selects the structure where mutations will occur, and saves all mutant IDs in the class.



	genParent()

	Summary Reads PDB file specified in the constructor; applies and combines results from the selection strings; and saves the final template structure in the job directory.



	genTruncatedPQR()

	Summary Generate a structure for each mutant ID by truncating the side chain to form alanine.



	getMutids()

	Summary



	run()

	Summary Perform a compuational alanine scan on the initialized Alascan class.



	run_parallel([n_workers])

	Summary Perform a computational alanine scan on the initialized Alascan class using multiple processes in parallel.



	set_grid(dime, glen, gcent)

	Summary In the case that the user wishes to manually specify grid dimension, this may be accomplished with the set_grid method.



	summary([filename])

	Summary Summarize results from the computational alanine scan once complete.












	checkerrors

	


	checkwarnings

	


	viewLogs

	


	writeLogs

	






	
calcAPBS()

	Summary
Run APBS on each structure in mutant library, in serial.


	Returns

	
	None

	Stores energies from APBS in Gref and Gsolv class attributes.














	
calcAPBS_parallel(n_workers=None)

	Summary
Run APBS on each structure in mutant library, in parallel.


	Parameters

	
	n_workersint

	Number of processes to run. If None, method will use all available
threads.







	Returns

	
	None

	Saves solvated-state and reference-state free energies as class
attributes.














	
calcCoulomb()

	Summary
Calculates Coulombic free energies with coulomb.exe from the APBS
toolbox.


	Returns

	
	None

	Saves Coulombic free energies as a class attribute.














	
calcCoulomb_parallel(n_workers=None)

	Summary
Calculates Coulombic free energies with coulomb.exe from the APBS
toolbox in a parallel manner.


	Parameters

	
	n_workersint

	Number of processes to run. If None, method will use all available
threads.







	Returns

	
	None

	Saves Coulombic free energies as a class attribute.














	
calcESI(idx=-1)

	Summary

Compare potential files and calculate the similarity index.
Values closer to 1 imply similarity while values closer to zero imply
dissimilarity.


	Parameters

	
	methodstr, optional

	This parameter will allow for other metrics to compare
grid potentials; however, for now only ‘AND’ is implemented.



	idxint

	Index of original PDB files supplied containing reference
structure. Set to None to perform all pairwise comparisons.







	Returns

	
	None

	Writes esi files to the esi_files directory within the job
directory.














	
checkerrors()

	




	
checkwarnings()

	




	
dGsolv_rel()

	Summary
Calculates and returns the free energy of a solvation for each mutant
relative to the parent free energy of solvation.


	Returns

	
	ndarray

	Array of solvation free energies corresponding to mutant IDs from
the Alascan.getMutIDs() method.














	
ddGa_rel()

	Summary
Calculates and returns the free energy of association relative to the
parent free energy of association.


	Returns

	
	ndarray

	Array of free energies corresponding to the mutant IDs from the
Alascan.getMutIDs() method.














	
find_grid()

	Summary
Calculate grid dimensions for APBS (dime, glen, gcent)


	Returns

	
	TYPE

	Sets class attributes dime, glen, and gcent














	
genDirs()

	Summary
This subroutine will generate all directories needed to contain
structural files, logs, etc. In the future we may implement a
method to remove such files when outputs are more standardized.


	Returns

	
	None

	No output, operates on the class and generates folders in the job
directory.














	
genMutid()

	Summary
This subroutine reads the input PDB, selects the structure where
mutations will occur, and saves all mutant IDs in the class.
If region is specified in the constructor, then the constraint
will be applied here.


	Returns

	
	None

	Operates on the class to generate a list of mutant IDs for each
selection string. The following class variables will be generated
(see class description):



	mutid


	list_chids


	list_resnums


	list_resnames


	mask_by_sel




















	
genParent()

	Summary
Reads PDB file specified in the constructor; applies and combines
results from the selection strings; and saves the final template
structure in the job directory.


	Returns

	
	None

	Template pdb written in job directory and location saved in
Alascan.file_pdb_template.














	
genTruncatedPQR()

	Summary
Generate a structure for each mutant ID by truncating the side chain
to form alanine.


	Returns

	
	None

	Write library of mutant structures to disk for subsequent analysis.














	
getMutids()

	Summary


	Returns

	
	list

	Returns vectorized format of mutids.














	
run()

	Summary
Perform a compuational alanine scan on the initialized Alascan class.


	Returns

	
	None

	Outputs text to STDOUT when run is complete, will be made optional
in the future.














	
run_parallel(n_workers=None)

	Summary
Perform a computational alanine scan on the initialized Alascan class
using multiple processes in parallel.


	Parameters

	
	n_workersint

	Number of processes to run. If None, method will use all available
threads.







	Returns

	
	None

	Outputs text to STDOUT when run is complete, will be made optional
in the future.














	
set_grid(dime, glen, gcent)

	Summary
In the case that the user wishes to manually specify grid dimension,
this may be accomplished with the set_grid method.
Typically, this is used when grid space parameters must be consistent
for many analyses. Please see description
at: http://www.poissonboltzmann.org/docs/apbs-overview/ for
description of parameters.


	Parameters

	
	dimelist

	List of three integers.



	glenlist

	List of three integers.



	gcentlist

	List of three integers.







	Returns

	
	TYPE

	Description














	
summary(filename=None)

	Summary
Summarize results from the computational alanine scan once complete.


	Parameters

	
	filenamestr, optional

	In order to write summary to a text file, supply the filename
(full path).







	Returns

	
	None

	Prints summary of residues and energies relative to the parent
structure if no filename is provided. Otherwise, writes to text
file.














	
viewLogs()

	




	
writeLogs(filename=None)

	








	
exception aesop.aesop.Complete_PDB_Exception

	Bases: exceptions.Exception






	
class aesop.aesop.DirectedMutagenesis(pdb, target, mutation, pdb2pqr_exe='pdb2pqr', apbs_exe='apbs', coulomb_exe='coulomb', selstr=['protein'], jobname=None, grid=1, ion=0.15, pdie=20.0, sdie=78.54, ff='parse', cfac=1.5, dx=False, minim=True)

	Summary


	Attributes

	
	apbsstr

	Full path to APBS executable. Must be compatible with OS.



	apbs_resultsstr

	Full path to output from APBS



	cfacnumeric

	Scaling factor for grid dimensions. We suggest to leave this unchanged.



	coulombstr

	Full path to coulomb executable from APBS package.
Must be compatible with OS.



	coulomb_resultsstr

	Full path to folder containing results from coulomb.



	dimelist

	List of three integers. Parameter required for APBS. Please see
description at: http://www.poissonboltzmann.org/docs/apbs-overview/



	disubool, optional

	If true, Modeller will guess patches for disulfide bridges. Only
relevant if minim is set to True.



	dxbool

	Variable that specifies if potential files should be written to disk.
Default is False.



	dx_fileslist

	If written to disk, list of potential files written to disk.
The folder containing these files is given by Alascan.apbs_results.



	E_refndarray

	Reference state energy values for each structure from APBS.



	E_solvndarray

	Solvated state energy values for each structure from APBS.



	ffstring

	Force-field to use for PDB2PQR



	file_pdb_templatestring

	Full path to template PDB file.



	gcentlist

	List of three integers. Parameter required for APBS. Please see
description at: http://www.poissonboltzmann.org/docs/apbs-overview/



	Gcoulndarray

	Coulombic free energies, corresponding to Alascan.mutid.



	glenlist

	List of three integers. Parameter required for APBS. Please see
description at: http://www.poissonboltzmann.org/docs/apbs-overview/



	Grefndarray

	Reference-state free energies, corresponding to Alascan.mutid.



	gridnumeric

	Distance spacing of grid points. If the grid dimensions are not
divisible by three, resolution will be increased (smaller grid
spacing) until grid dimensions are divisible by three.



	Gsolvndarray

	Solvated-state free energies, corresponding to Alascan.mutid.



	ionnumeric

	Ionic strength to be used in the solvated-state APBS calculations.



	jobdirstr

	[Optional] Path to folder containing results. If not specified, a
directory will be generated.



	jobnamestr

	[Optional] Name for current job, will be used to create the jobdir.



	list_chidslist

	Chain ID where mutation was made. Corresponds to Alascan.mutid.



	list_resnameslist

	Residue names where mutation was made. Corresponds to Alascan.mutid.



	list_resnumslist

	Residue numbers where mutation was made. Corresponds to Alascan.mutic.



	logslist

	List of strings that represent the log files from every executable
called (namely, PDB2PQR and APBS)



	logs_apbs_dirstr

	Folder in jobdir containing output from APBS (logs, input files, dx
files)



	mask_by_selndarray

	Matrix containing selection masks. The first column corresponds to
the selection string for the parent and each column thereafter
corresponds to an element of the selection string (selstr)
in the same order.



	max_iterinteger, optional

	Maximum number of calls to the objective function. If this value
is reached, then minimization is terminated. Default value is
1000 iterations.



	min_atom_shiftfloat, optional

	If the maximimum atomic shift between minimization steps is less
thant this value, convergence is reached and minimization is
terminated. Default value is 0.1 angstroms.



	minimbool, optional

	If true, structures will be minimzed with Modeller’s conjugate
gradient descent algorithm.



	mutationlist

	Identity of amino acid for mutation of corresponding target.
Must be the same length as target and each residue must use the
standard 3-letter amino acid code.



	mutidlist

	List of mutant IDs. The first element corresponds to the parent.
Subsequent elements correspond to each element of the selection
string list (selstr). Please use Alascan.getMutids() to get
vectorized version.



	outputstring, optional

	Modeller option specifying whether to print verbose output to
STDOUT (‘REPORT’), or to print minimal output to STDOUT (‘NO_
REPORT’)



	pdbstr

	Path to PDB file with atomic coordinates. Must follow formatting
conventions of the Protein Databank.



	pdb2pqrstr

	Full path to PDB2PQR executable.



	pdb_complex_dirstr

	Folder name in the job directory that contains the PDB file(s)
of the complex structures.



	pdienumeric

	Protein dielectric constant to be used in APBS.



	pqr_complex_dirstr

	Folder name in the job directory containing PQR files for each
protein complex.



	pqr_sel_dirlist

	List of folder names in the job directory that contain PQR files
for selection strings (selstr). Each element of pqr_sel_dir
corresponds to the same element of selstr.



	sdienumeric

	Solvent dielectric constant to be used in APBS.



	selstrlist

	List of selection strings. Typically each selection string will
correspond to a chain in a protein complex. We advise users to
specify two or more selection strings. (Ex: [‘chain A’, ‘chain B’])



	targetlist

	List of residue numbers to mutate. Must correspond element-wise
to mutation attribute.









Methods







	calcAPBS()

	Summary Call apbs to calculate reference-state and solvation-state energies for all structures in library.



	calcAPBS_parallel([n_workers])

	Summary Run APBS on each structure in mutant library, in parallel.



	calcCoulomb()

	Summary Calculates Coulombic free energies with coulomb.exe from the APBS toolbox.



	calcCoulomb_parallel([n_workers])

	Summary Calculates Coulombic free energies with coulomb.exe from the APBS toolbox in a parallel manner.



	dGsolv_rel()

	Summary Calculates and returns the free energy of a solvation for each mutant relative to the parent free energy of solvation.



	ddGa_rel()

	Summary Calculates and returns the free energy of association relative to the parent free energy of association.



	find_grid()

	Summary



	genDirs()

	Summary This subroutine will generate all directories needed to contain structural files, logs, etc.



	genMutid()

	Summary This subroutine reads the input PDB, selects the structure where mutations will occur, and saves all mutant IDs in the class.



	genPDB([minim])

	Summary



	genPQR()

	Summary Generates PQR for each PDB in library.



	genParent()

	Summary Reads PDB file specified in the constructor; applies and combines results from the selection strings; and saves the final template structure in the job directory.



	getMutids()

	Summary



	run()

	Summary Perform a directed mutagenesis scan on the initialized class.



	run_parallel([n_workers])

	Summary Perform a computational directed mutagenesis scan on the initialized class using multiple processes in parallel.



	set_grid(dime, glen, gcent)

	Summary In the case that the user wishes to manually specify grid dimension, this may be accomplished with the set_grid method.



	summary([filename])

	Summary Summarize results from the computational alanine scan once complete.












	checkerrors

	


	checkwarnings

	


	viewLogs

	


	writeLogs

	






	
calcAPBS()

	Summary
Call apbs to calculate reference-state and solvation-state energies
for all structures in library.


	Returns

	
	None

	Sets class attributes Gsolv and Gref














	
calcAPBS_parallel(n_workers=None)

	Summary
Run APBS on each structure in mutant library, in parallel.


	Parameters

	
	n_workersint

	Number of processes to run. If None, method will use all
available threads.







	Returns

	
	None

	Saves solvated-state and reference-state free energies
as class attributes.














	
calcCoulomb()

	Summary
Calculates Coulombic free energies with coulomb.exe from the APBS
toolbox.


	Returns

	
	None

	Saves Coulombic free energies as a class attribute.














	
calcCoulomb_parallel(n_workers=None)

	Summary
Calculates Coulombic free energies with coulomb.exe from the APBS
toolbox in a parallel manner.


	Parameters

	
	n_workersint

	Number of processes to run. If None, method will use all
available threads.







	Returns

	
	None

	Saves Coulombic free energies as a class attribute.














	
checkerrors()

	




	
checkwarnings()

	




	
dGsolv_rel()

	Summary
Calculates and returns the free energy of a solvation for each mutant
relative to the parent free energy of solvation.


	Returns

	
	ndarray

	Array of solvation free energies corresponding to mutant IDs
from the Alascan.getMutIDs() method.














	
ddGa_rel()

	Summary
Calculates and returns the free energy of association relative
to the parent free energy of association.


	Returns

	
	ndarray

	Array of free energies corresponding to the mutant IDs from
the Alascan.getMutIDs() method.














	
find_grid()

	Summary
Calculate grid dimensions for APBS (dime, glen, gcent)


	Returns

	
	TYPE

	Sets class attributes dime, glen, and gcent














	
genDirs()

	Summary
This subroutine will generate all directories needed to contain
structural files, logs, etc. In the future we may implement a method
to remove such files when outputs are more standardized.


	Returns

	
	None

	No output, operates on the class and generates folders in the
job directory.














	
genMutid()

	Summary
This subroutine reads the input PDB, selects the structure where
mutations will occur, and saves all mutant IDs in the class.
If region is specified in the constructor, then the constraint will
be applied here.


	Returns

	
	None

	Operates on the class to generate a list of mutant IDs for each
selection string. The following class variables will be
generated (see class description):



	mutid


	list_chids


	list_resnums


	list_resnames


	mask_by_sel




















	
genPDB(minim=True)

	Summary
Generates mutations by calling function to mutate PDB with modeller


	Returns

	
	None

	Write PDB library to expected path according to class attributes.














	
genPQR()

	Summary
Generates PQR for each PDB in library.


	Returns

	
	None

	Calls PDB2PQR and writes PQR to expected path according to
class attributes.














	
genParent()

	Summary
Reads PDB file specified in the constructor; applies and combines
results from the selection strings; and saves the final template
structure in the job directory.


	Returns

	
	None

	Template pdb written in job directory and location saved in
Alascan.file_pdb_template.














	
getMutids()

	Summary


	Returns

	
	list

	Returns vectorized format of mutids.














	
run()

	Summary
Perform a directed mutagenesis scan on the initialized class.


	Returns

	
	None

	Outputs text to STDOUT when run is complete, will be made optional
in the future.














	
run_parallel(n_workers=None)

	Summary
Perform a computational directed mutagenesis scan on the initialized
class using multiple processes in parallel.


	Parameters

	
	n_workersint

	Number of processes to run. If None, method will use all
available threads.







	Returns

	
	None

	Outputs text to STDOUT when run is complete, will be made
optional in the future.














	
set_grid(dime, glen, gcent)

	Summary
In the case that the user wishes to manually specify grid dimension,
this may be accomplished with the set_grid method.
Typically, this is used when grid space parameters must be consistent
for many analyses. Please see description
at: http://www.poissonboltzmann.org/docs/apbs-overview/ for
description of parameters.


	Parameters

	
	dimelist

	List of three integers.



	glenlist

	List of three integers.



	gcentlist

	List of three integers.







	Returns

	
	TYPE

	Sets class attributes for dime, glen, gcent














	
summary(filename=None)

	Summary
Summarize results from the computational alanine scan once complete.


	Parameters

	
	filenamestr, optional

	In order to write summary to a text file, supply the
filename (full path).







	Returns

	
	None

	Prints summary of residues and energies relative to the parent
structure if no filename is provided.
Otherwise, writes to text file.














	
viewLogs()

	




	
writeLogs(filename=None)

	








	
class aesop.aesop.ElecSimilarity(pdbfiles, pdb2pqr_exe='pdb2pqr', apbs_exe='apbs', selstr=None, jobname=None, grid=1, ion=0.15, pdie=20.0, sdie=78.54, ff='parse', cfac=1.5, minim=False)

	Summary


	Attributes

	
	apbsstr

	Full path to APBS executable. Must be compatible with OS.



	cfacnumeric

	Scaling factor for grid dimensions. We suggest to leave this unchanged.



	dim_dxlist

	Dimensions of grid space



	dimelist

	List of three integers. Parameter required for APBS.Please see
description at: http://www.poissonboltzmann.org/docs/apbs-overview/



	disubool, optional

	If True, Modeller will guess the patches for disulfide bridges
within the provided protein structures. Only relevant if minim
is set to True.



	dxbool

	Variable that specifies if potential files should be written to disk.
Default is False.



	dxdirstr

	Folder in job directory where potential files are stored.



	dxfileslist

	List of all potential files.



	edgesndarray

	Edges of grid space.



	esdndarray

	Matrix of pairwise electrostatic similarities.



	ffstr

	Forcefield to use in assigning charges to PDB files.



	gcentlist

	List of three integers. Parameter required for APBS. Please see
description at: http://www.poissonboltzmann.org/docs/apbs-overview/



	glenlist

	List of three integers. Parameter required for APBS. Please see
description at: http://www.poissonboltzmann.org/docs/apbs-overview/



	gridint

	Desired grid spacing in Angstroms. Actual grid spacing may be
slightly lower.



	idslist

	List of IDs for each structure being compared with the ESD metric.



	ionnumeric

	Ionic strength to be used in the solvated-state APBS calculations.



	jobdirTYPE

	Description



	jobnamestr

	[Optional] Name for current job, will be used to create the jobdir.



	logslist

	List of strings that represent the log files from every executable
called (namely, PDB2PQR and APBS)



	max_iterinteger, optional

	Maximum number of calls to the objective function. If this value
is reached, then minimization is terminated. Default value is
1000 iterations.



	midpointsndarray

	Midpoints of grid space



	min_atom_shiftfloat, optional

	If the maximimum atomic shift between minimization steps is less
thant this value, convergence is reached and minimization is
terminated. Default value is 0.1 angstroms.



	minimbool, optional

	If true, structures will be minimzed with Modeller’s conjugate
gradient descent algorithm.



	outputstring, optional

	Modeller option specifying whether to print verbose output to
STDOUT (‘REPORT’), or to print minimal output to STDOUT (‘NO_
REPORT’)



	pdb2pqrstr

	Full path to PDB2PQR executable.



	pdbdirstr

	Folder in job directory where PDB files are located.



	pdbfileslist

	List of PDB file names.



	pdienumeric

	Protein dielectric constant to be used in APBS.



	pqrdirstr

	Folder in job directory containing PQR files.



	pqrfileslist

	List of PQR files in pqrdir



	sdienumeric

	Solvent dielectric constant to be used in APBS.









Methods







	calcESD([method])

	Summary Compare potential files and calculate the similarity distance.



	calcESI([method, idx])

	Summary



	centerPDB()

	Summary



	genDX()

	Summary Generates potential files using APBS.



	genDX_parallel([n_workers])

	Summary Generates multiple potential files in parallel by calling APBS multiple times according to how many threads are available/specified.



	genPQR()

	Summary



	initializeGrid()

	Summary Method to find grid parameters and ensure that the product of dimensions is divisible by three.



	minimPDB()

	Summary Re-reads PDB files in pdbdir and performs energy minimization.



	mutatePQR([selstr, minim, ff])

	Summary



	superposePDB()

	Summary Superpose each structure in pdbfiles with first element in pdbfiles list.












	checkerrors

	


	checkwarnings

	


	run

	


	run_parallel

	


	viewLogs

	


	writeLogs

	






	
calcESD(method='AND')

	Summary
Compare potential files and calculate the similarity distance.
Smaller distances imply similarity.


	Parameters

	
	methodstr, optional

	This parameter will allow for other metrics to compare
grid potentials; however, for now only ‘AND’ is implemented.







	Returns

	
	None

	Stores esd matrix as class attribute.














	
calcESI(method='AND', idx=0)

	Summary

Compare potential files and calculate the similarity index.
Values closer to 1 imply similarity while values closer to zero imply
dissimilarity.


	Parameters

	
	methodstr, optional

	This parameter will allow for other metrics to compare
grid potentials; however, for now only ‘AND’ is implemented.



	idxint

	Index of original PDB files supplied containing reference
structure. Set to None to perform all pairwise comparisons.







	Returns

	
	None

	Writes esi files to the esi_files directory within the job
directory.














	
centerPDB()

	Summary
Re-reads PDB file in pdbdir and centers coordinates at (0, 0, 0)


	Returns

	
	TYPE

	Overwrites previous PDB files in pdbdir














	
checkerrors()

	




	
checkwarnings()

	




	
genDX()

	Summary
Generates potential files using APBS.


	Returns

	
	None

	Generates DX files in dxdir














	
genDX_parallel(n_workers=None)

	Summary
Generates multiple potential files in parallel by calling APBS
multiple times according to how many threads are
available/specified.


	Parameters

	
	n_workersint

	Number of processes to run.
If None, method will use all available threads.







	Returns

	
	TYPE

	Generates DX files in dxdir.














	
genPQR()

	Summary
Convert all PDB files to PQR files with charges allocated according to
a compatible force-field


	Returns

	
	None

	Generates PQR files in the pqrdir














	
initializeGrid()

	Summary
Method to find grid parameters and ensure that the product of
dimensions is divisible by three.


	Returns

	
	None

	Sets class attributes dime, glen, gcent.














	
minimPDB()

	Summary
Re-reads PDB files in pdbdir and performs energy minimization.


	Returns

	
	TYPE

	Overwrites previous PDB files in pdbdir














	
mutatePQR(selstr=['protein'], minim=False, ff='parse')

	Summary
Mutate all PQR files, optional method


	Returns

	
	None

	Generates PQR files in the pqrdir














	
run(center=False, superpose=False, esi=False, esd=True, selstr=None, idx=0, minim=False)

	




	
run_parallel(n_workers=None, center=False, superpose=False, esi=False, esd=True, selstr=None, idx=0, minim=False)

	




	
superposePDB()

	Summary
Superpose each structure in pdbfiles with first element in
pdbfiles list. This uses Modeller to perform the superpositioning.


	Returns

	
	TYPE

	Overwrites PDB files in pdbdir with new coordinate information.














	
viewLogs()

	




	
writeLogs(filename=None)

	








	
class aesop.aesop.Grid(filename=None)

	Summary

The grid class facilitates parsing and writing of OpenDX file formats.
In the current state, the class is quite rudimentary and only supports
changing vectors for the grid data.


	Attributes

	
	filenamestring

	DX file to import



	potndarray

	Vectors at each grid point. For AESOP, these will typically be
electrostatic potentials or an electrostatic similarity index.



	headerlist

	List of grid parameters from the OpenDX format prior to vectors.



	footerlist

	List of grid parameters from the OpenDX format subsequent to the
vectors.









Methods







	readDX([filename])

	Summary



	writeDX([filename])

	Summary







	
re = <module 're' from '/home/docs/checkouts/readthedocs.org/user_builds/aesop/envs/latest/lib/python2.7/re.pyc'>

	




	
readDX(filename=None)

	Summary

Method to parse a DX file


	Parameters

	
	filenamestring

	Name for the OpenDX file to be imported. If unspecified, this
parameter defaults to the class attribute.














	
writeDX(filename=None)

	Summary

Function to write OpenDX files


	Parameters

	
	filenamestring

	Name for OpenDX file that will be written. This should be a full
path if you wish to place the file somewhere other than the
current working directory.


















	
exception aesop.aesop.Minimize_CG_Exception

	Bases: exceptions.Exception






	
exception aesop.aesop.PDB2PQR_Exception

	Bases: exceptions.Exception






	
aesop.aesop.batchAPBS(kernel)

	Summary
Function required to run multiple APBS jobs simultaneously. Not intended
for general use.


	Parameters

	
	kerneltuple

	Tuple of parameters required for APBS.







	Returns

	
	ndarray

	i, j represent the index in the matrix with which the calculated
energies correspond. The last two elements are the solvation and
reference energies, respectively.














	
aesop.aesop.batchCalcDX(kernel)

	Summary
Function required to run multiple APBS jobs simultaneously. Not
intended for general use.


	Parameters

	
	kerneltuple

	Tuple of parameters required for APBS.







	Returns

	
	None

	Writes files according to calcDX function.














	
aesop.aesop.batchCoulomb(kernel)

	Summary
Function required to run multiple Coulomb jobs simultaneously. Not
intended for general use.


	Parameters

	
	kerneltuple

	Tuple of parameters required for APBS.







	Returns

	
	ndarray

	i, j represent the index in the matrix with which the calculated
energies correspond. The last element is the Coulombic energy.














	
aesop.aesop.calcDX(path_apbs_exe, pqrfile, prefix=None, grid=1.0, ion=0.15, pdie=20.0, sdie=78.54, cfac=1.5, glen=None, gcent=array([ 0., 0., 0.]), dime=None)

	Summary
Calls the APBS executable after generating the APBS inputfile. Generates
a potential file (DX).


	Parameters

	
	path_apbs_exestr

	Full path to APBS executable, EX: ‘C:APBSapbs.exe’.



	pqrfilestr

	The PQR file that will be used to generate a grid of electrostatic
potentials. Must be a full path if file is not in current path.



	prefixstr, optional

	Phrase to prepend before any file that is generated before writing.



	gridfloat, optional

	Distance spacing of grid points. If the grid dimensions are not
divisible by three, resolution will be increased (smaller grid
spacing) until grid dimensions are divisible by three.



	ionfloat, optional

	Ionic strength for APBS calculation.



	pdiefloat, optional

	Protein dielectric constant for APBS calculation.



	sdiefloat, optional

	Solvent dielectric constant for APBS calculation.



	cfacfloat, optional

	Scaling factor for grid dimensions. We suggest to leave this unchanged.



	glenNone, optional

	List of three integers. Parameter required for APBS. Please see
description at: http://www.poissonboltzmann.org/docs/apbs-overview/



	gcentTYPE, optional

	List of three integers. Parameter required for APBS. Please see
description at: http://www.poissonboltzmann.org/docs/apbs-overview/



	dimeNone, optional

	List of three integers. Parameter required for APBS. Please see
description at: http://www.poissonboltzmann.org/docs/apbs-overview/







	Returns

	
	(log, err)tuple

	When APBS runs, outputs that would have been sent to STDOUT are
captured. Log contains the run log and err contains errors.














	
aesop.aesop.complete_structure(pdb, dest=None, disu=False)

	Summary
Function to fill in residues with missing atoms. This method simply calls
complete_pdb from Modeller.


	Parameters

	
	pdbstr

	Full path to pdbfile that will be modified.



	deststr (optional)

	Full path to destination where completed pdb will be written. If not
specified, the model object from Modeller will be returned.



	disubool (optional)

	If True, complete_pdb will predict and patch all disulfide bridges.
Default is False.














	
aesop.aesop.execAPBS(path_apbs_exe, pqr_chain, dime, glen, gcent, prefix=None, ion=0.15, pdie=20.0, sdie=78.54, dx=False)

	Summary
Calls the APBS executable after generating the APBS inputfile.
Calculates solvation and reference energies.


	Parameters

	
	path_apbs_exestr

	Full path to APBS executable, EX: ‘C:APBSapbs.exe’.



	pqr_chainstr

	PQR file name containing the segment that will undergo electrostatic
calculations.



	dimelist

	List of three integers. Parameter required for APBS. Please see
description at: http://www.poissonboltzmann.org/docs/apbs-overview/



	glenlist

	List of three integers. Parameter required for APBS. Please see
description at: http://www.poissonboltzmann.org/docs/apbs-overview/



	gcentlist

	List of three integers. Parameter required for APBS. Please see
description at: http://www.poissonboltzmann.org/docs/apbs-overview/



	prefixstr, optional

	Phrase to prepend before any file that is generated before writing.



	ionfloat, optional

	Ionic strength for APBS calculation.



	pdiefloat, optional

	Protein dielectric constant for APBS calculation.



	sdiefloat, optional

	Solvent dielectric constant for APBS calculation.



	dxbool, optional

	If true, potential files are written.







	Returns

	
	file_apbs_logstr

	File name for the log file that APBS generates.
This file contains results from performed calculations.














	
aesop.aesop.execCoulomb(path_coulomb_exe, pqr)

	Summary
Call Coulomb from APBS tools to calculate Coulombic energies.


	Parameters

	
	path_coulomb_exestr

	Full path to coulomb executable.



	pqrTYPE

	Filename for PQR to use for Coulombic energy calculation. Must be
full path if not in current path.







	Returns

	
	float

	Coulombic energy associated with input PQR file.














	
aesop.aesop.execPDB2PQR(path_pdb2pqr_exe, pdbfile, outfile=None, ff='parse')

	Summary
Calls the APBS executable according to:
<path to pdb2pqr appropriate for OS> –ff=parse –chain inputfile outputfile


	Parameters

	
	path_pdb2pqr_exestr

	Full path to pdb2pqr executable



	pdbfilestr

	PDB file to be converted to a PQR. Should be a full path if not in
current working directory.



	outfilestr, optional

	File name for PQR file that will be generated. May be a full path if
desired output is not in current working directory.



	ffstr, optional

	String instructing PDB2PQR what force field to employ. For more
information visit: http://www.poissonboltzmann.org/docs/pdb2pqr-usage/







	Returns

	
	(log, err)tuple

	When PDB2PQR runs, outputs that would have been sent to STDOUT
are captured. Log contains the run log and err contains errors.














	
aesop.aesop.minimize_cg(struct, dest=None, disu=True, min_atom_shift=0.1, max_iter=1000, output='NO_REPORT', log=None, report_iter=10)

	Summary
Function to perform conjugate gradient descent minimization in Modeller on
a user-provided structural file (PDB).


	Parameters

	
	structstr

	String for path to PDB file



	deststr

	String for path to location where minimized structure will be written



	disubool

	If true, positions of disulfide bridges will be automatically detected



	min_atom_shiftfloat

	If the max atomic shift between minimization steps is less than this
value, then convergence is reached and minimization is terminated



	max_iterint

	Maximum number of calls of objective function before minimization is
terminated



	outputstr

	Valid options are ‘NO_REPORT’ and ‘REPORT’. If set to ‘REPORT’, then a
log file during minimation will be printed to screen



	logstr or None

	String for path to location where minimization report will be saved.
If None, no report will be saved. Report contains only values of
objective function at after each report interval.



	report_iterint

	Integer that describes the number of minimization steps to perform
before reporting the objective function.







	Returns

	
	mdlModel object from Modeller

	If dest is None, the function will return the minimized model.
If dest is specified, then no model will be returned but the
minimized model will be written to file.














	
aesop.aesop.mutatePDB(pdb, mutid, resnum, chain=None, resid='ALA')

	Summary
Function to generate a mutant structure given a local PDB file using
MODELLER.


	Parameters

	
	pdbstr

	Full path to pdbfile that will be modified.



	mutidstr

	Prefix for mutated structure that will be written. May be a full path
without file extension if desired output path is not in working
directory.



	resnumint, or type that can be forced to int

	Integer number specifying residue number to be mutated.



	chainstr, optional

	Chain ID where specified residue number is to be mutated. This is
necessary to specify if residue numbers are not unique on each chain.



	residstr, optional

	Three letter amino acid code specifying the type of mutation. Default
mutation is to alanine (‘ALA’).







	Returns

	
	None

	Writes mutated structure to file.














	
aesop.aesop.mutatePQR(pqrfile, mutid, resnum, chain=None, ff='parse')

	Summary
Mutate PQR file via side-chain truncation scheme (mutate to Alanine)


	Parameters

	
	pqrfilestr

	Full path to PQR file



	mutidstr

	Prefix to use when writing mutated PQR. Should be a full path if
destination is not in working directory.



	resnumint

	Residue number to mutate to alanine.



	chainstr, optional

	Chain where residue that will be mutated is located.







	Returns

	
	None

	Writes mutated PQR to file specified by the prefix mutid.














	
aesop.aesop.plotDend(esd, filename=None)

	Summary
Function to display an electrostatic similarity dendrogram from a
previously run ElecSimilarity class.


	Parameters

	
	esdElecSimilarity class

	ElecSimilarity class containing final esd matrix.



	filenamestr, optional

	If the resulting plot should be written to disk, specify a filename.
Otherwise, the image will only be saved.







	Returns

	
	None

	Writes image to disk, if desired.














	
aesop.aesop.plotESD(esd, filename=None, cmap='hot')

	Summary
Function to display an electrostatic similarity heatmap from a previously
run ElecSimilarity class.


	Parameters

	
	esdndarray

	ESD matrix from ElecSimilarity class (ElecSimilarity.esd).



	filenamestr, optional

	If the resulting plot should be written to disk, specify a filename.
Otherwise, the image will only be saved.



	cmapstr, optional

	Colormap from matplotlib to use.







	Returns

	
	None

	Writes image to disk, if desired.














	
aesop.aesop.plotESD_interactive(esd, filename=None, cmap='YIGnBu', display_output='external')

	Summary
Function to display an electrostatic similarity heatmap from a previously
run ElecSimilarity class. Figure is more interactive that the standard
matplotlib figure.


	Parameters

	
	esdElecSimilarity class

	ElecSimilarity class containing final esd matrix.



	filenamestr, optional

	If the resulting plot should be written to disk, specify a filename.
Otherwise, the image will only be saved.



	cmapstr, optional

	Colormap from matplotlib to use.



	display_outputstr

	Set output to either open local html file in browser or inline
plot in notebook.







	Returns

	
	None

	Writes image to disk, if desired.














	
aesop.aesop.plotNetwork(scan, filename=None, title='', dpi=300, cutoff=5.0, E=2.5, node_size=1500, font_size=12, alpha=0.8, edge_color='g', edge_width=3.0, layout=None, **kwargs)

	Summary
Function to visualize electrostatic interactions from a scan class
(Alascan or Directed Mutagenesis). Requires networkx to be installed.


	Parameters

	
	scanAlascan or DirectedMutagenesis class

	Scan class where calculation of free energies is complete.



	filenamestr or None

	Full path to file where figure will be saved. If None, no figure
is saved, but the plot is displayed and the graph is returned.



	titlestr

	Matplotlib style title for plot.



	dpiint

	Integer specifying the dots per inch, or image resolution.



	cutofffloat

	Distance cutoff in Angstroms for determining if a electrostatic
interaction occurs. Default value is 5 Angstroms.



	Efloat

	Threshold for determing those nodes that should be included in
the network based on the value of the free energy perturbation
that results from mutating the amino acid. If the magnitude of
the free energy of association relative to the parent structure
is greater than E, then the node is included. Default is
2.5 kJ/mol.



	node_sizeint

	Parameter to scale size of nodes in network. Larger values
result in nodes with larger diameter.



	font_sizeint

	Font size for text within network. 12 pt font is default.



	alphafloat

	Set transparency of nodes. Default is 0.8. Accepted range
is [0, 1].



	edge_colorstr

	Matplotlib-style specification of line color. Default is ‘g’
(green).



	edge_widthint

	Set the line width for edges. Default is 3 pt font.



	layoutNetworkx layout kernel or None

	Network layout from networkx. Extra arguments for this layout
may be passed as key word arguments to plotNetwork.














	
aesop.aesop.plotNetwork_interactive(scan, filename=None, title='', cutoff=5.0, E=2.5, font_size=14, node_size=20, edge_color='#888', edge_width=0.5, display_output='external', layout=None, **kwargs)

	Summary
Function to visualize electrostatic interactions from a scan class
(Alascan or Directed Mutagenesis). Figure is more interactive than
the standard matplotlib figure. Requires networkx to be installed.


	Parameters

	
	scanAlascan or DirectedMutagenesis class

	Scan class where calculation of free energies is complete.



	filenamestr or None

	Full path to file where figure will be saved. If None, no figure
is saved, but the plot is displayed and the graph is returned.



	titlestr

	Matplotlib style title for plot.



	cutofffloat

	Distance cutoff in Angstroms for determining if a electrostatic
interaction occurs. Default value is 5 Angstroms.



	Efloat

	Threshold for determing those nodes that should be included in
the network based on the value of the free energy perturbation
that results from mutating the amino acid. If the magnitude of
the free energy of association relative to the parent structure
is greater than E, then the node is included. Default is
2.5 kJ/mol.



	node_sizeint

	Parameter to scale size of nodes in network. Larger values
result in nodes with larger diameter.



	font_sizeint

	Font size for text within network. 12 pt font is default.



	edge_colorstr

	Matplotlib-style specification of line color. Default is ‘g’
(green).



	edge_widthint

	Set the line width for edges. Default is 3 pt font.



	display_outputstr

	Set output to either open local html file in browser or inline
plot in notebook.



	layoutNetworkx layout kernel or None

	Network layout from networkx. Extra arguments for this layout
may be passed as key word arguments to plotNetwork.














	
aesop.aesop.plotScan(Alascan, filename=None)

	Summary
Function to display results from the computational alanine or directed
mutagenesis scan.


	Parameters

	
	Alascanscan class

	Alascan or DirectedMutagenesis class after running the complete
analysis.



	filenameNone, optional

	If the resulting plot should be written to disk, specify a filename.
Otherwise, the image will only be saved.







	Returns

	
	tuple

	Handles to generated figure.














	
aesop.aesop.plotScan_interactive(Alascan, display_output='external', filename=None)

	Summary
Function to display results from the computational alanine or directed
mutagenesis scan. Figure is more interactive than the standard matplotlib
figure.


	Parameters

	
	Alascanscan class

	Alascan or DirectedMutagenesis class after running the complete
analysis.



	display_outputstr

	Set output to either open local html file in browser or inline
plot in notebook.



	filenameNone, optional

	If the resulting plot should be written to disk, specify a filename.
Otherwise, the image will only be saved.







	Returns

	
	None

	Saves image of figure, if desired.














	
aesop.aesop.runProcess(command)

	Summary
Simple function intended to capture outputs from processes that write
to STDOUT.


	Parameters

	
	commandlist

	Lists of strings where each element is a part of the entire command.
Ex: [‘script’,’arg1’,’arg2’,…]







	Returns

	
	tuple

	return tuple where first element is output that would have been sent
to STDOUT and the second element captures errors.














	
exception aesop.aesop.runProcess_Exception

	Bases: exceptions.Exception






	
aesop.aesop.superpose(ref, pdb, atype='CA', output=None)

	Summary
Uses Modeller to superpose a PDB file (pdb) to a reference PDB (ref).


	Parameters

	
	refstr

	Full path to PDB file (or name of file in working directory) that will
be used as the reference for superpositioning.



	pdbstr

	Full path to PDB file (or name of file in working directory) that will
be used as the mobile structure for superpositioning.



	atypestr

	Modeller-compatible string selection for atoms to be used in
superpositioning. We suggest using ‘CA’.



	outputstr or None

	If output is None, the file specified by pdb will be updated with the
superposed structure. If specified, output should be a full path where
the superposed structure will be saved.














	
aesop.aesop.writePDB(alascan, filename=None)

	Summary
Function to write free energies of association/solvation into B-factor
column of PDB for easy visualization of results.


	Parameters

	
	alascanscan class

	Alascan or DirectedMutagenesis class after running the complete
analysis.



	filenamestr, optional

	Full path to file where PDB file will be written. Defaults to job
directory.



















          

      

      

    

  

    
      
          
            

   Python Module Index


   
   a
   


   
     		 	

     		
       a	

     
       	[image: -]
       	
       aesop	
       

     
       	
       	   
       aesop.aesop	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | P
 | R
 | S
 | V
 | W
 


A


  	
      	aesop.aesop (module)


  

  	
      	Alascan (class in aesop.aesop)


      	APBS_Exception


  





B


  	
      	batchAPBS() (in module aesop.aesop)


  

  	
      	batchCalcDX() (in module aesop.aesop)


      	batchCoulomb() (in module aesop.aesop)


  





C


  	
      	calcAPBS() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


      


      	calcAPBS_parallel() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


      


      	calcCoulomb() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


      


      	calcCoulomb_parallel() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


      


      	calcDX() (in module aesop.aesop)


      	calcESD() (aesop.aesop.ElecSimilarity method)


  

  	
      	calcESI() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.ElecSimilarity method)


      


      	centerPDB() (aesop.aesop.ElecSimilarity method)


      	checkerrors() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


        	(aesop.aesop.ElecSimilarity method)


      


      	checkwarnings() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


        	(aesop.aesop.ElecSimilarity method)


      


      	Complete_PDB_Exception


      	complete_structure() (in module aesop.aesop)


  





D


  	
      	ddGa_rel() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


      


  

  	
      	dGsolv_rel() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


      


      	DirectedMutagenesis (class in aesop.aesop)


  





E


  	
      	ElecSimilarity (class in aesop.aesop)


      	execAPBS() (in module aesop.aesop)


  

  	
      	execCoulomb() (in module aesop.aesop)


      	execPDB2PQR() (in module aesop.aesop)


  





F


  	
      	find_grid() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


      


  





G


  	
      	genDirs() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


      


      	genDX() (aesop.aesop.ElecSimilarity method)


      	genDX_parallel() (aesop.aesop.ElecSimilarity method)


      	genMutid() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


      


      	genParent() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


      


  

  	
      	genPDB() (aesop.aesop.DirectedMutagenesis method)


      	genPQR() (aesop.aesop.DirectedMutagenesis method)

      
        	(aesop.aesop.ElecSimilarity method)


      


      	genTruncatedPQR() (aesop.aesop.Alascan method)


      	getMutids() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


      


      	Grid (class in aesop.aesop)


  





I


  	
      	initializeGrid() (aesop.aesop.ElecSimilarity method)


  





M


  	
      	minimize_cg() (in module aesop.aesop)


      	Minimize_CG_Exception


      	minimPDB() (aesop.aesop.ElecSimilarity method)


  

  	
      	mutatePDB() (in module aesop.aesop)


      	mutatePQR() (aesop.aesop.ElecSimilarity method)

      
        	(in module aesop.aesop)


      


  





P


  	
      	PDB2PQR_Exception


      	plotDend() (in module aesop.aesop)


      	plotESD() (in module aesop.aesop)


      	plotESD_interactive() (in module aesop.aesop)


  

  	
      	plotNetwork() (in module aesop.aesop)


      	plotNetwork_interactive() (in module aesop.aesop)


      	plotScan() (in module aesop.aesop)


      	plotScan_interactive() (in module aesop.aesop)


  





R


  	
      	re (aesop.aesop.Grid attribute)


      	readDX() (aesop.aesop.Grid method)


      	run() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


        	(aesop.aesop.ElecSimilarity method)


      


  

  	
      	run_parallel() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


        	(aesop.aesop.ElecSimilarity method)


      


      	runProcess() (in module aesop.aesop)


      	runProcess_Exception


  





S


  	
      	set_grid() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


      


      	summary() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


      


  

  	
      	superpose() (in module aesop.aesop)


      	superposePDB() (aesop.aesop.ElecSimilarity method)


  





V


  	
      	viewLogs() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


        	(aesop.aesop.ElecSimilarity method)


      


  





W


  	
      	writeDX() (aesop.aesop.Grid method)


      	writeLogs() (aesop.aesop.Alascan method)

      
        	(aesop.aesop.DirectedMutagenesis method)


        	(aesop.aesop.ElecSimilarity method)


      


  

  	
      	writePDB() (in module aesop.aesop)


  







          

      

      

    

  

    
      
          
            
  
AESOP modules



	API









          

      

      

    

  _static/up-pressed.png





_static/up.png





_images/alascan.png
segl ddGa relative to WT

15
10
5

0
-5
—10

|low/

VOITH
V80T
VZOTH
VIOTId
V3861
veed
V.84
v98d
VEBY
vaLld
ve/ld
VZLY
V694
Vo9
VZ9o
v093
vV6Gd
vvad
Vo
vvvd
Vo e
v6c3
VLO
vaaa
V6T
V8TH
vZid
v8d

seg2 ddGa relative to WT

veoeld
V0613
V88T
Vo813
VG8IH
Vv8.13
Vv .14
VOLT
VL9113
Vv91Hd
VvZo13d
VoGI13d
vov1d
varid
Vvid
V8ETd
veeTd
VZETA
VIETA
VLZTH
vadlZid
V1ZTH
V8113
VZTTA
VITTA





_images/biomodel.png





_images/mutscan.png
kJ/mol

kJ/mol

25
20
15
10

Ul

—10
—-15
—-20

sell ddGa relative to WT

-
AV4
m
I~
L

sel?2 ddGa relative to WT

K27A
K27D
E73A

E142A

E142K
D145A
D145K





_images/network.png
(low/ry)VOVvY






_images/dend.png
ESD

0.5

0.4

0.3

0.2

0.1

0.0

wzL

2

B
Variants

scas






_images/esd.png





_static/ajax-loader.gif





_static/comment-bright.png





nav.xhtml

    
      Table of Contents


      
        		
          AESOP
        


        		
          About
          
            		
              Acknowledgements
            


            		
              References
            


            		
              Published applications of AESOP
            


          


        


        		
          Installation
          
            		
              Anaconda installation
            


            		
              Install PDB2PQR, APBS and Coulomb
            


            		
              Install other dependencies
            


            		
              Installing AESOP
            


            		
              Install from source
            


          


        


        		
          Preparing PDB Files
        


        		
          Atomic Selections
          
            		
              Basic Examples
            


            		
              Alanine scan example
            


            		
              DirectedMutagenesis scan example
            


          


        


        		
          Electrostatic Similarity
          
            		
              Example case 1: LTP plant proteins
            


            		
              Example case 2: Alascan of a LTP plant protein
            


            		
              References
            


          


        


        		
          Alanine Scan
          
            		
              Example case: Barnase-Barstar
            


            		
              References
            


          


        


        		
          Directed Mutagenesis Scan
          
            		
              Example case: Barnase-Barstar
            


            		
              References
            


          


        


        		
          API
          
            		
              Package
            


            		
              AESOP contents
            


          


        


      


    
  

_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/minus.png





_static/plus.png





_static/file.png





